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1. INTRODUCTION 

THE dipole-dipole interactions between the mag­
netic moments of spin-J nuclei in molecules in a 

liquid contribute significantly to the nuclear magnetic 
relaxation of the liquid. The dipole-dipole interaction 
between a pair of spins depends upon the position vector 
of one spin with respect to the other. The relative posi­
tion of nuclei in liquid molecules changes with time as 
a result of the translational and rotational motions of 
the molecules. The dipole-dipole interactions thus act 
as time-dependent perturbations on the Zeeman energy 
levels of the nuclei and produce transitions between 
these energy levels, which results in the relaxation of 
the nuclear magnetization. 

Since the distance between nuclei in the same mole­
cule is effectively constant, the time dependence of 
intramolecular dipole-dipole interactions in liquid mole­
cules is due just to the rotational motion of the mole­
cules. The time dependence of the relative position of 
two nuclei in different molecules depends on the transla­
tional motion of the molecules and also on the rotational 
motion of the molecules, unless both nuclei are at the 
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centers of their respective molecules. Hence, the con­
tribution of intermolecular dipole-dipole interactions to 
the nuclear magnetic relaxation of polyatomic molecules 
in a liquid depends on both the translational and rota­
tional motions of the molecules. 

Previous treatments of the contribution of inter­
molecular dipole-dipole interactions to nuclear magnetic 
relaxation in liquids have taken into account only the 
translational motion of the molecules, on the assumption 
that the nuclei can be considered to be at the centers of 
spherical molecules which approach each other no 
more closely than a molecular diameter.1-4 This assump­
tion is valid only for liquids containing monatomic 
molecules. In the case of liquids containing polyatomic 
molecules, the distance of closest approach of nuclei in 
different molecules is less than the diameter of a mole­
cule, which means that a correct treatment might give 
a greater contribution to the relaxation rate, since the 
magnitude of the dipole-dipole interaction varies in­
versely as the cube of the distance between the spins. On 

1 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 
73, 679 (1948). 

2 H. C. Torrey, Phys. Rev. 92, 962 (1953). 
8 1 . Oppenheim and M. Bloom, Can. J. Phys. 39, 845 (1961). 
4 A. Abragam, The Principles of Nuclear Magnetism (Clarendon 

Press, Oxford, 1961), p. 300. 
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of a molecule and D is the translational diffusion coefficient, is sufficiently short that (a>oro)2<3Cl, where wo is 
the Larmor frequency of the nuclei. As a result of the short correlation time assumption (3), the contributions 
of the intermolecular interactions to (l/Ti) and ( l / r 2 )a re found to be the same and are given by an infinite 
series, the first three terms of which are 

(&M£)"-:£!['̂ ©,*".©v..j 
where n is the number of spins per unit volume, y is the gyromagnetic ratio of each nucleus, and b is the dis­
tance of each nucleus from the center of the molecule in which it is contained. The first term in the series is 
the result obtained in previous calculations in which the effect of the rotations of the molecules was neglected. 
In a typical case in which (b/a)^i, the second and third terms are 6.8% of the first term. 
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the other hand, if the nuclei are not at the centers of 
molecules, and the rotational motion is taken into 
account in addition to the translational motion, the 
time dependence of the relative position of nuclei in 
different molecules is different from the case in which 
the nuclei are at the centers of molecules. This addi­
tional motion can be expected to reduce the relaxation 
effect, since the previous calculations indicate that the 
rate of relaxation decreases as the rate of molecular 
motion increases for the conditions that exist in most 
liquids.1 It is not obvious a priori which of the two 
effects mentioned above is more important. The follow­
ing calculation shows that the first effect dominates, and 
that the contribution of intermolecular dipole-dipole 
interactions to the nuclear magnetic relaxation of poly­
atomic molecules in a liquid is greater than that pre­
dicted by the previous approximate treatments. 

2. RELAXATION BY DIPOLE-DIPOLE 
INTERACTIONS 

Consider a system of N identical nuclei, each having 
a spin of § and gyromagnetic ratio 7. Suppose that the 
nuclei are at equivalent positions in spherical molecules 
in a liquid. The calculation of the nuclear magnetic 
relaxation of the system resulting from the time-de­
pendent dipole-dipole interactions between the nuclei 
can be formulated by use of the density operator theory 
of relaxation.5 The equations so obtained are found to 
involve certain correlation functions of each dipole-
dipole interaction with itself and with other dipole-
dipole interactions. The calculation predicts a simple 
exponential decay of the longitudinal and transverse 
nuclear magnetization if one retains in the equations 
only those terms that involve the correlation of each 
dipole-dipole interaction with itself. The validity of the 
omission of the other terms is not obvious a priori, since 
the magnitudes of some of the omitted terms are as 
large as the magnitudes of the terms that are retained. 
However, in the few calculations in which the cross 
correlation terms have been included, it has been found 
that they produce a negligible effect.6-8 These calcula­
tions do not prove that the cross correlation terms 
always have negligible effect. Nonetheless, in order to 
obtain a tractable expression for the relaxation effect of 
the intermolecular dipole-dipole interactions, in this 
paper we shall employ the approximate expressions ob­
tained by omitting the cross correlation terms. Thus, the 
longitudinal relaxation time T\ and the transverse 
relaxation time Ti are given, respectively, by9 

( i / r 0 = 2 E ( - i y / V z , _ z ( - w (2.1) 

5 P. S. Hubbard, Rev. Mod. Phys. 33, 249 (1961). 
6 P. S. Hubbard, Phys. Rev. 109, 1153 (1958); 111, 1746 (E) 

(1958). 
7 G. W. Kattawar and M. Eisner, Phys. Rev. 126, 1054 (1962). 
8 P. S. Hubbard, Phys. Rev. 128, 650 (1962). 
9 Reference 5, Eqs. (165a) and (165b). 

and 

(l/r»)= E (-iy(6-P)Ji,-i(-luo), (2.2) 
Z=-2 

where coo is the Larmor frequency, which in terms of the 
applied magnetic field Ho, is given by 000=7^0. The 
function /^(co) is defined by 

Jikfa) = ]C;(1 ~ Sij)Jm dj)lk(^)y (2.3) 
where 

1 r°° 
J(ij)«j)lk(o>) = - / C(ijHij)

lk(r)e^dr. (2.4) 

The correlation function in Eq. (2.4) is defined by 

C(.i)W)^W = ( ^ / ( / + r ) ^ / ( 0 ) , (2.5) 
where 

* V = ( 3 T T / 1 0 ) 1 / 2 7 % ^ / ) - 3 ( - l ) * F r W , f c / ) . (2.6) 

The Y2k are normalized spherical harmonics. The mag­
nitude of the position vector r*/ of the ith nucleus with 
respect to the ^th is denoted by n/7 and its polar angles 
by (Qi/dij). The time dependence of the functions Uijk 

is due to the change with time of r#' as a result of the 
molecular motion in the liquid. In the present paper, 
the molecular motion will be considered to be classical, 
and a stationary random process. Hence, the correlation 
functions (2.5) are independent of t. By replacing t by 
t—r in (2.5), one obtains 

C(«)(tf)ttW = C ( t f ) ( <ow(-r). (2.7) 

The quantity (1/Ti) given by Eq. (2.1) can be written 
as the sum of two terms which contain, respectively, the 
effects of intramolecular and intermolecular dipole-
dipole interactions: 

(i/r1)=(i/r1)'+(i/r1)") (2.8) 
where 

(i/r0'=2 E ( -D 'P iy /(«>«>'•-'(-&o), (2.9) 
l=-2 

the sum £ / being over the other nuclei in the same 
molecule as the jth nucleus, and 

(i/r0"=2 EC-D 'PE/ ' /ww^-^o ) , (2.10) 
Z=-2 

the sum X)/' being over all the nuclei not in the same 
molecule as the jth nucleus. Similarly, it follows from 
(2.2) and (2.3) that 

(i/r2)=(i/r2)'+(i/r2)-, (2.11) 
where 

(i/r2)'= E(-D*(6-/2)Z/ /cW'- '(-&o), (2.12) 
Z=-2 

and 

(i/r2)"= z (-i)'(6-p)E/'/«o«o,--'(-&»o).(2.i3) 
Z=-2 
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3. INTERMOLECULAR CONTRIBUTION 

Let N" be the total number of spins in the sample less 
the number of spins in a single molecule. Since the spins 
are all in equivalent positions, it follows that 

Hi"c (ij) (ti) 
k(r) = = tf"CW)W)»(T), (3.1) 

where the i and j subscripts in the right-hand member 
of the equation refer to any two nuclei in different 
molecules. By use of Eqs. (2.5) and (2.6), one can obtain 
from (3.1) the relation 

v " r . i 

where 

(r) = N,/(3T/10)(y2hy(-l)k+l 

X ( [ / 2 - ? ( r , / ) ] , + T [ / 2 ^ ( r , / ) ] , ) , (3.2) 

fL^ti/^ir./r^Y^ie,/^/). (3.3) 

The position vectors of the ith and the 7 th nuclei with 
respect to the laboratory coordinate system are denoted, 
respectively, by r / and r / , so that r ; / = r / - - r / . The 
position vector of the ith nucleus with respect to the 
center of the spherical molecule in which it is contained 
is denoted by ti, and the position vector of the center of 
the molecule with respect to the laboratory coordinate 
system by R*. Hence, r / = R ; + r ; and r / = Ry+ry. There­
fore, r*/=(R;— Ry)+(r — ry). I t is convenient to intro­
duce the quantities R=R t — Ry and r=r4—ry, in terms 
of which r # ' = R + r . No confusion arises from the omis­
sion of subscripts i and j on R and r because we hence­
forth are concerned only with a single pair of spins in 
different molecules, as in Eq. (3.1). 

A three-dimensional Taylor series expansion of the 

function /2*(r#') about the point R gives the expression 

/*w)=£:--('• v*)«/,*(R). 
K=O K! 

But (r-Vij) can be expressed as 
(r-VjB) = x05o—#-idi—ocid-h 

where 

and 
x0^z, x±i^^rl~ll2{xzLiy), 

d I d d \ 
d0=—, a ± 1 = = F 2 - 1 / 2 ( — ± * — ) . 

\dX BY/ dZ 

Furthermore, 

(x0do—-#-idi—#id_i)K 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

-(*bdo)*(-*_idi) ,'(-*id_i)», (3.8) 

where the summation extends over all non-negative 
integers n, v, 77, such that )x-{-v-\-r)=K. Use of (3.5) and 
(3.8) in (3.4) gives 

/»*(*</) = t E —(x0)"(-x_1)'(-x1)-
K=0 nvrj filvlrjl 

Xd0»d1
vd-iif2

k(R). (3.9) 

I t is assumed that the rotational motions of the 
molecules and their translational motions are inde­
pendent, so that r and R are independent. Thus, if 
(3.9) is used in Eq. (3.2), the result can be written 

- YyW(-i)k+l I I — E E —— 
1 0 / *=0 pvr, fxlvlrjl *'=0 M V V jX \V \t\ ! 

X(£(xoy(-X-1)i-x1)^t+Tl(xoy (3.10) 

The first correlation function in Eq. (3.10) depends on the rotational motion of the molecules, and the second 
correlation function depends on their translational motion. If a model of the rotational and translational motions 
of the molecules is adopted which permits the calculation of these correlation functions, the contribution of the 
intermolecular dipole-dipole interactions to the nuclear magnetic relaxation can then be obtained by use of (3.10) 
in (2.10) and (2.13). 

The correlation function in (3.10) that depends upon the translational motion can be written in a different 
form which facilitates its evaluation. I t is a consequence of Eq. (All) of Appendix A that 

d 0 Wd-iV2*(R)==(- l ) K 
• 5{2-k+K-v+ri)\(2+k+K+v->n)\-\ll2 

2* - " (2JC+5) (2 - * ) ! (2+* ) ! 
h+K k+v—q* (R). (3.11) 

Hence, 

JV , \ [do^i 'd- iV^R)]<+r[do* '3 /d- 1 </2-*(R)] t ) 

(2+l+K-v+v)K2-l+K-\-v-ri)\{2+k+K'-v'+r,'y.{2-k+K'+v'--n')\ i 1 " 

•[•' 2 * « ' - I ^ M ' ( 2 * + 5 ) ( 2 I C / + 5 ) ( 2 + 0 1(2-01(2+*) ! ( 2 - * ) ! 

X ( - iy+*'5N"(U*+rl+>-'>(K)lt+rUn* - ^" -" ' (R) ]*) . (3.12) 

In order to evaluate the correlation function on the right-hand side of Eq. (3.12), we assume that the transla­
tional motion of the spherical molecules is a classical diffusion with diffusion coefficient D, and that the distance 
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of closest approach of two molecules is 2a, where a is the radius of the molecules. By use of this model, it is shown 
in Appendix B that 

GLL,™'(T)=N"(ZfLM(Rnt+T£fL,M'(R)lt) 

=nSL'LS-M'M(-l)MGL(T), (3.13) 
where 

z-00 /-D\T\U\ 
G i ( r ) = ( 2 a ) - 2 £ + 1 / expf —\[JL^^Ju^du, (3.14) 

and n is the number of spins per unit volume. Use of Eq. (3.13) leads to the following expression for the right-
hand side of Eq. (3.12): 

S ( 2 + / + < t - j ' + i j ) I ( 2 - ; + j c + j — I J J I C - I ) - " ^ 
n?>Kii'S-l+i>-n,k-v'+-n'~_— _____ 777—~ZT77i—TTTT-T77TI—_. <?2+K(r). 

Thus, Eq. (3.10) can be written 

(2K+5)C22"-"-"'(2+;) 1(2-f) 1(2+*) \{2-k)!] 

Z / 'C W )Mo '* ( r ) = »T(7 JA)*(-l)* E Clk^(r), 

1/2 
(3.15) 

(3.16) 

where 

c»«(r)=i: 3 ( 2 + / + K - H - .) ! (2 -H- K +*<- v) I 

XC24-K(r)([(^o)K^-l)^l) , ?]^rC(xo)^(-^l) ' ' ,(-^l) , ? ,]^). (3.17) 

The first term in the sum in Eq. (3.16) does not 
depend upon the rotational motions of the molecules. 
I t is 

C«^(T) = ^ i J b (A)G 2 ( r ) . (3.18) 

Previous treatments of relaxation by intermolecular 
dipole-dipole interactions have included only this term. 

If K= 1 in Eq. (3.17), there are nine terms in the sums, 
in each of which one of the indices ju, v, rj is unity and 
the other two are zero, and one of the indices fx\ / , rj' is 
unity and the other two are zero. Hence, there occur 
correlation functions of the form (D^ZGH-TE^J*). I t *s 

shown in Appendix C that, if the rotational motion of 
the molecules is isotropic rotational diffusion, 

foW^)= ( 2 / 3 ) ^ _ ^ ( - l ) ^ - 2 » ' M , (3.19) 

where b is the distance of each spin from the center of 
the molecule in which it is contained, and Dr is the 
rotational diffusion coefficient introduced by Furry in 
his theory of isotropic rotational Brownian motion.10 

Thus, the only nonzero terms in the sums in (3.17) are 
the three terms for which / / = J U = 1 , v=v' = ri = ri'=0; 
v=rj'=l, fi—iJLf—v'=r) = 0] and rj = v'=l, ii=ix'f=p~rjf 

= 0. Hence, one finds that 

p+p'+q+q' = 0, and that in particular the only nonzero 
values are 

= (4/45)b4(Se-^^+3e~^^), (3.21a) 

= -(2/45)M(Se-^^+3e~&D,l^), (3.21b) 

(£x±iXT1JiH.TliX±iXT{]t) 

= (2 /45)^(10+5e- 4 D , ^l+^ 6 2 > / l^) , (3.21c) 

= - (4/45)&4(5-<r6D ' , r |), (3.21d) 

(lXoXo]t+r[XoXo]t) 
= (4/45)64(5+5e-4 i ) , l^+2e-6 2 ) , l^). (3.21e) 

If the above quantities are used in Eq. (3.17) to evaluate 
Ciki2)(r), one obtains the surprisingly simple result 

CiiM(T) = d-i,Jc3b*e-zD'^Gz(T). (3.20) 

The calculation of C^ (2)(T) fr°m (3.17) is more 
complicated. When K = 2 , it is apparent that the cor­
relation functions that occur in (3.17) are of the form 
([_XpXp>~]t+T[x-qxq'~]t). These correlation functions can be 
evaluated by the same procedure used in Appendix C 
to calculate (3.19). I t is found that they are zero unless 

> W. H. Furry, Phys. Rev. 107, 7 (1957). 

ClkM(r) 

= 8^i)k(U/5)bKSe-w^^+3e~^^)G4(r). (3.22) 

I t is of interest to note that the three terms in the 
expansion (3.16) which have been calculated above are 
each zero unless k——l. In the derivation of the ex­
pressions (2.1) and (2.2) for the relaxation times, terms 
containing the functions Jik(u>) with k^—l can be 
omitted because their rapid oscillation makes their 
effect on the relaxation negligible. However, the above 
calculation indicates that the contribution of the inter­
molecular dipole-dipole interactions to Jik(u) is zero 
unless k=—l. At least, such is the case for the three 
terms in (3.16) which have been calculated. 
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From Eqs. (2.4) and (3.16) it follows that 

--nw(y2hy(-iy 
oo 1 /•« 

- o 2 i _ c 

Ci,-i^(r)e-il^dr. (3.23) 

The first term in the sum over K in (3.23) can be re­
written by use of Eqs. (3.18) and (3.14). After perform­
ing the integration over r, one obtains the following 
expression for the first term: 

1 f 
J —oo 

Ch-i^{r)e~il^rdr 

= ( \[ Um{u)J[u'+{l^r,Y']-1udui (3.24) 

\40ZW7o 

where the correlation time TO is defined by 

T0=2a2/D. (3.25) 
In most liquids the correlation time TO is sufficiently 
short that (coor0)

2<3Cl. If the correlation time is short, 
little error is introduced in the evaluation of (3.24) by 
neglecting (/COOTO)2 in comparison to uA, in which case 
one obtains the result11 

1 /•" 

2J-X 

Ci,-i^(r)e~il^Tdr 

= ( \f lJz/2(u)Ju-'du=(100Da)-\ (3.26) 
\AODaJJo 

The second term in the sum in (3.23) can be rewritten 
by use of Eqs. (3.20) and (3.14). After performing the 
integration over r, one obtains the expression 

1 r f 3b2 \ r 
- Ch-i™(j)<r*»**dT=[ ) / C/5/2W]2 

X[(^2+^2)2+(^oro)2]-1(^2+^2)^-1^, (3.27) 

where A2=(4a2D'/D). Here again if (co0r0)
2«l, or if 

(COOTO)2<3G44, which is also usually satisfied in practice, 
the term (/CO0T0)

2 can be neglected with little error, in 
which case 

1 r 
- / Ci,_i<1>(r)er««orj r 

2J-00 

3b2 

\16aW ) / . v -
2(u)J(A2+u2)-lirldu. (3.28) 

11 The value of the integral is obtained by putting ix = v — §, a — 1, 
and X = 3 in Eq. (S2), p. 35, of Special Functions of Mathematical 
Physics, by W. Magnus and F. Oberhettinger (Chelsea Publishing 
Company, New York, 1949). 

In a similar manner, it follows from Eqs. (3.22) 
and (3.13) that the third term in Eq. (3.23) can be 
expressed as 
I -oo * 7 £ 4 v .oo 

- / C i , - , W ( r ) ^ - ^ r = ( )/ UvMJ 
2/_00 \160a5D/Jo 

X {5(B2+u2)~1+3(C2+u2)~1}u-1duJ (3.29) 

where B2= (Sa2D'/D) and C2= (12a2D'/D). In obtaining 
Eq. (3.29) it has again been assumed that (cooro)2<3Cl, 
or that (COOTO)

 2 «£ 4 , C4. 
According to the theory of the translational Brownian 

motion of spherical particles, the translational diffusion 
coefficient can be expressed as D—kT/f, where k is the 
Boltzmann constant, T is the temperature, and / is the 
viscous retarding force per unit velocity. If the viscous 
force is given by the Stokes expression, — 671-0)7 v, it 
follows that f=6Tarj, where a is the molecular radius, 
and r} is the coefficient of viscosity of the fluid. Hence, 
D=kT/6irar).12 Similarly, the rotational diffusion co­
efficient can be expressed as D'=kT/f'} where / ' is the 
viscous retarding torque per unit angular velocity.6 The 
viscous torque is given by the expression — 87r^3co,13 so 
that f=STT7ja\ and D^kT/Swrja8. Therefore, the 
translational and rotational diffusion coefficients for 
spherical particles are related by 

D=%a2D'. (3.30) 

Hence the quantities A, B, and C introduced previously 
have the values 

A*=3, B2=6, C2=9. (3.31) 

After substitution of the values (3.31), the integrals 
occurring in Eqs. (3.28) and (3.29) have been evaluated 
numerically.14 The results are 

Jo 
U^(n)J{3+u2)~lu~ldu^ 0.0124, (3.32a) 

Jo 
Uv2(u)22{S(6+u2)-1 

+3(9+u2)-1}u~1du=0.034. (3.32b) 

The contribution of the intermolecular dipole-dipole 
interactions to the longitudinal relaxation can be ex­
pressed in the following form by use of Eq. (3.23) in 
Eq. (2.10): 

— J =2nwy4h2 £ I2 £ - / Ci^i^(r)e~il^dr. 
Tj 1—2 K=O 2)_^ 

(3.33) 

12 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943), Chap. II , 
Sec. 2. 

13 H. Lamb, Hydrodynamics (Cambridge University Press, 
Cambridge, 1930), 5th ed., p. 558. 

14 The numerical values of the Bessel functions were taken from 
Tables of Spherical Bessel Functions, Mathematical Tables Project, 
N. B. S. (Columbia University Press, New York, 1947). 

file:///40ZW7o
file:///AODaJJo
file:///16aW
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Substitution of expressions (3.26), (3.28), and (3.29) for 
the first three terms in the sum over K in Eq. (3.33) and 
use of the values given by Eqs. (3.32) gives 

(l/Td"=(nirYAh*/SaD) 
X{l+0.233(b/a)2+0.15(b/ay+' * ' } • (3.34) 

The same expression is obtained for (1/J ,
2) / / by use of 

Eqs. (3.23), (3.26), (3.28), (3.29), and (3.32), which was 
to be expected since the correlation time TO has been 
assumed to be short. The first term in Eq. (3.34) is the 
expression that has previously been calculated.3,4 

The above calculations have been based on the as­
sumption that the Taylor series expansion (3.4) con­
verges if | r | < | R |, which is plausible but difficult to 
prove rigorously. Since, in the calculations following the 
expansion (3.4), one has | r | < 2 £ and | R | > 2 # , the 
condition | r | < |R | is satisfied if b<a. The series in the 
result, Eq. (3.34), appears to converge if b<a. In a 
typical case, (b/a) might have the value J, so that 
Eq. (3.34) would give 

(l/T^^imry^ySaD) 

X {1+0.0583+0.0094+• • • } . (3.35) 

If the ratio of the successive terms in the remainder of 
the series were not greater than (b/a)2—J, the remaining 
terms would not contribute more than 0.31% to the 
value of ( l / F i ) " . 

The contributions of intramolecular dipole-dipole 
interactions between identical spin-J nuclei in equiva­
lent positions to the longitudinal and transverse relaxa­
tion rates are given, respectively, by Eqs. (2.9) and 
(2.12), if the effect of cross correlations of different 
dipole-dipole interactions is neglected. The vectors r#' 
between nuclei in the same molecule vary with time only 
in direction and not in magnitude. If the liquid mole­
cules undergo isotropic rotational Brownian motion, the 
correlation functions (2.5) involving two nuclei in the 
same molecule can be calculated by use of Furry's 
theory in the same manner described in Appendix C. 
Thus, one can obtain the result 

C«fl «o»(r) = 5 -^ (3 /40 ) ( 7 ^ ) 2 (n - / ) - 6 ( -1 ) ! 

X e x p ( - | r | / T 2 ) , (4.1) 
where 

T2=(6DT\ (4.2) 

and Df is the rotational diffusion coefficient. Hence one 
obtains from Eqs. (2.4), (2.9), and (2.12) the familiar 
results 

(1/Td'= (3/10)y%2r2 £ / ( n / ) " 6 

X{Cl+(cor2)2]-1+4[l+(2coor2)2]-1}, (4.3) 

( l /T 2 ) '= (3 /20)7 4 f t 2 r 2 E/ ( r , / ) - 6 

X{3+5[ l+(co 0 r 2 ) 2 ] - 1 +2[ l+(2 W 0 T 2 ) 2 ] - 1 }. (4.4) 

5. CONCLUSIONS 

The contribution of intermolecular dipole-dipole in­
teractions to the nuclear magnetic relaxation of identical 
spin-J nuclei at equivalent positions in spherical mole­
cules in a liquid has been calculated. The assumptions 
made were that: (1), the effect of cross correlations of 
different dipole-dipole interactions is negligible, so that 
the relaxations of the longitudinal and transverse com­
ponents of the nuclear magnetization are simple ex­
ponential decays with relaxation times T% and T2 given, 
respectively, by Eqs. (2.1) and (2.2); (2), the motions 
of the molecules can be considered to be translational 
and rotational diffusion; and (3), the correlation time 
r0, Eq. (3.25), is sufficiently short that (coor0)

2<3Cl, where 
coo is the Larmor frequency. As a result of the short 
correlation time assumption, the contributions to the 
longitudinal and transverse relaxation rates were found 
to be the same, and are both given by Eq. (3.34) in 
the form of an infinite series, the first three terms of 
which have been evaluated. The first term in the series 
is the result obtained in previous calculations, in which 
the effect of the rotations of the molecules was neglected. 
In a typical physical situation, in which (b/a) — %, the 
sum of the infinite series appears to differ from the sum 
of the first three terms by less than 0.31%, and the sum 
of the first three terms is greater than the previously 
obtained first term by 6.8%. 

Hobson has shown that, if ^ > w > 0 , 

dn~m / d d\ml 

dzn~m\dx by! r 

(-\)n~m(n-m)\ 
= e±im^Pn

m(fj), ( A l ) 

where 6 and </> are the polar angles of r, and ju=cos0.15 

Hobson's definition of the associated Legendre function 
is15 

(— l)m dn+m 

Pnm(v) = sinm0 (fx2- l)n. (A2) 
2nn\ dixn+m 

The spherical harmonics Yn
m(B,4>) used in the present 

paper16 are given in terms of (A2) by 

r(2n+l)(n-m)l-\1/2 

r„~(0,0) = e***Pn
mQi). (A3) 

L 47r(n-\-m)! J 

16 E. W. Hobson, The Theory of Spherical and Ellipsoidal 
Harmonics (Cambridge University Press, Cambridge, 1931), 
p. 134. 

16 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press), 2nd ed., Eqs. (2.5.29) and (2.5.17). 

4. INTRAMOLECULAR CONTRIBUTION APPENDIX A 
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By use of (A3), Eq. (Al), written with the upper sign, Eq. (A4) and its complex conjugate lead to the equation 

can be expressed as D0
n~mD+im(l/r) 

Xn-m , X a v m 1 ( ~ 1 ) T M » - * » ) ! ( » + w ) !"11 / 2 

Since V2(1A) = 0 if r>0, it follows that 

, n l / 2 F„^) . (A4) ^ ^ ( V D = ( i ) W - W i A ) (— l)n~mr4:7r(n—m) \(n+m)!" 

r^ 1 L (2»+l) = ( l )*W*(l / f ) . (A7) 
Hence, if a, 6, and c are non-negative integers whose 

A similar equation, but with — i in the left-hand member, sum is n, and if b> ci 

can be obtained by taking the complex conjugate of (A4) DoaDihD^ic(l/r) = (^)cDon~{b~c)D^b~c)(l/r). (A8) 
and using the relation Yn-

m(6,<l>) = {~\)mYn
m*(6,<t>). If 

one introduces the operators Similarly, if b<c, 

D o a D i ^ - i c ( l A ) = ( | ) ^ o n - ( c - 6 ) ^ - i ( c - 6 ) ( l A ) . (A9) 

£>0== f p±1==p:2~1/2[ zhi J, (A5) I t follows from (A6), (A7), and (A8) that, for any non-
dz \dx by) negative integers a, b, and c whose sum is n, 

(-l)XMn-b+c)l(n+b--c)l-\112 

DfDfD-SiX/r)^ Yn
b-°(d,<t>). (A10) 

rn+i I 2n-a(2n+l) J 

Finally, it follows from Eqs. (A10) and (A6) that, if ju, v, and 77 are non-negative integers with sum K, and \m\<k, 

[ (2k+l)(k—m+K—v-\-7))l(k+m+K+v 

2^{2k+2K+\){k-m)\{k+m)\ 

r(2k+l)(k-m+K-v+v)l(k+m+K+v~v)\-\
112 

D o ^ / J 9 _ ^ ( F ^ A f c + 1 ) = ( - l ) l : ,_. ..,_ {Yk+K
m+v~^/rk+ti+1). (Al l ) 

APPENDIX B the sample, N"P(R0) is equal to n, the number of spins 

Substitution of the expression (3.3) for fL* into the P e r u n i t v o l u m e i n t h e f m P l e ' ^he integrals in (B3) 
definition (3 13) gives a r e o v e r a ^ s P a c e ^or w n i c n R a n o- "0 are greater than 

2a, the distance of closest approach of the centers of 
GLL'MM\T) two molecules. 

= ^ / / ( [F i /
M ( f i ) / J^ L + 1 ] , + r [F^ M , (^ ) /^ L , + 1 ]« ) , (Bl) The expression (B3) can be expanded in terms of 

_ . e T, . ^ . spherical harmonics by first using the Fourier integral 
where R is the magnitude of K, and il represents the e x D a n s i 0 n 
polar angles specifying the direction of R. If P(R,R0 ,r) 
is the conditional probability density that the relative { Z _ _ _ _ i 
displacement of the centers of the molecules is R at time * [ g£>r i 
t+r if it is Ro at the earlier time /, and if P(Ro) is the 
probability density that the relative displacement is =( \ [ exD(-2P™ 2 V^ ( R - R o ) d 3 o (B4) 
Ro at time t, then \ T J J 

Q tMM'(T\^ifft f [[ \P(R R T) a n C * t h e n r eP l a c^ nS exp(*9-R) and exp(—ig- R0) by their 
LL' J J L R1^1 J expansion of the form 

rYL,"'(Qo)l e^=MW2pR)112 Z ilYr*(WimW)Jw*(pR), (B5) 
X ; P(Ro)^R^3R0 . (B2) m>1 

L Ro +1 J where £2' specifies the orientation of p, and the J1+1/2 are 

The above expression can be evaluated in the same Bessel functions of the first kind.After these expressions 
manner used by Abragam.* If the translational diffusion are substituted in (B2) and use is made of the orthogo-
coefficient of the molecules in the liquid is D, n a l l t y o f t h e s P h e n c a l ^ rmonics , one obtains 

P(R )Ro,r) = (8xHr)- 3 ' 2exp{-(R-Ro)V8I>T}. (B3) C i l - « ' ( T ) = » 8 M L J f - « ( - l ) 1 ' f p exp(-2DrP*) 

The probability density P(Ro) is simply unity divided r «, -,2 

by the volume of the sample. Hence, since N" is large x / J L+w(pR)R~wndR dp. (B6) 
and differs negligibly from the total number of spins in Lj2o -I 
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Bessel functions satisfy the relation 

d 

dR 
-£R-J.(pK)l= -PR-*Js+1(pR). (B7) 

If s is replaced by L—\ in (B7), where L>0, and the 
equation is integrated from 2a to <*>, one obtains 

f 
J 2a 

Jw/2(pR)R-^dR 

= p^(2a)-L+vVL-.1/2(2ap). (B8) 

The above equations have been derived on the assump­
tion that r > 0 . Since the average in (Bl) is independent 
of t, replacement of t by t— r gives GLL,MM'{J) 
= GL>LM'M(—T). Hence, substitution of (B8) into (B6) 
followed by a change in the variable of integration from 
p to u=2ap gives Eq. (3.13). 

APPENDIX C 

Since r = r*— ry, where r* and ry are, respectively, the 
position vectors of the ^th and jih nuclei with respect 
to the centers of the two different molecules in which 
they are located, it follows that 

OCp %{p Xjp^ \ v> J- / 

where the spherical components are defined by 

XJQ=ZJ, X3,±i= =F2~1/2(^yzbiyy). (C2) 

Since the motions of r»- and ry are independent, 

Since the motions of r» and ry are isotropic, ([x;J*+ T) = 0 
and ([%jq]t) = 0 for any /. Furthermore, since rt- and ry 
have the same length b, and undergo the same kind of 
motion, ([x4-2,]^+T[^J i)=([xy2>]f+T[xyJ<). Therefore, 

<[>P]H-T[> J*> = 2([XJ p]t+T\jCj q~]t). (C3) 

Suppose that ry has the value r at the time / and the 
value r ' at time t-\-r. If the molecule in which ry is fixed 
rotates through an angle a about a direction specified 
by the unit vector c^ (sin#' cos#', sin#' sin<£', cosfl') in 
the time r between t and t+r, then 

tf = rcosa+(c'r)c(l — cosa)+(cXr) since (C4) 

= r'(r,a,£). 

From Furry's theory of rotational Brownian motion10 

it follows that the probability of a rotation of the spheri­
cal molecule during time r through an angle between 
a and a+da about an axis c pointing into the solid 
angle dtf=sm6'd6'd4>' is P(a,T)dotd£l', where 

P(a,r) = ( l / 4 x 2 ) f ; ( 2 H - l ) 

X [ c o s ^ a - cos(>+ 1 ) Q : > - W ( W + 1 ) D ' r. (CS) 

The probability that at time t ry points into solid angle 
dSl is simply dtt/4w. Hence, 

= ( — J / dQ J daP(a,r) / da'z'(T,a,d)z 

^ cosce 

+ (c'r)c2(l~cosa)-\-(cxy—cyx) sinafjs. (C6) 

The integrations in the above expression can be per­
formed easily, with the result 

( H H - r M * ) = ( l / 3 ) } ^ ' ' . (C7) 

The same result is obtained for ([#y]*+r[#y]*) and 
([yjlt+rZyjlt)' The correlation functions that involve 
two different Cartesian components of ry, such as 
(BvDn-rfe]*), are found to be all zero, as is obvious from 
symmetry considerations. The expressions for the cor­
relation functions of the Cartesian components of ry lead 
to the following expression for the correlation functions 
of the spherical components: 

(Zxjplt+rtxj J«> = (1/3M- iybv,-qe-™'\ (C8) 

The above expressions were derived for r > 0 . Since the 
average in (C8) is independent of t, replacement of t by 
t—T in the correlation function on the left side of (C8) 
leads to the conclusion that it is an even function of r. 
Hence, substitution of (C8) into (C3) gives (3.19). 


